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STEFAN'S PROBLEM IN A FINITE DOMAIN WITH CONSTANT
BOUNDARY AND INITIAL CONDITIONS: ANALYSIS

Shunsuke Takagi

INTRODUCTION

Under any initial and boundary conditions that are given by appro-

* priate infinite series, Stefan's problem in a semi-infinite domain can be

solved by utilizing the two infinite series of the elemental temperature

* functions, i.e., a general solution for heat conduction in a semi-infinite

domain [1, 2, 3, 4]. Their solution method was brought to completion in

1978 by Tao 14]. He introduced a formula expressing the higher derivatives

of a function. The conditions at the moving boundary can be rewritten by

- this formula to a set of simultaneous linear equations of the unknown

parameters. Further progress in the analysis in a semi-infinite domain has

*been made by Tao; I mention a few that may be interesting to us. The

*density jump that may occur at the moving boundary can be introduced into

the analysis [5). Analyticity of the interfacial coordinate as a function

* of t 1 12 is proved (6].

In spite of the progress that has been made so far, difficulties in a

finite domain are yet outstanding. Analysis in a finite domain must be

* understood for practical applications. The heart of the difficulties seems

* to be in analytically formulating the well-established practice in numeric-

al studies (for example [7]), i.e., that the solution of a Stefan's

* problem in a finite domain is initially close to that in a semi-infinite

* domain but eventually arrives at a final stationary state. In this paper,

we demonstrate how the solution in a finite domain, obtained under the



simplest boundary and initial conditions, transits from the semi-infinite

domain solution to the finite domain solution.

The breakthrough is achieved by use of three essential tools. The

first is the conversion of a pair of well-used series solutions [I, 2, 3,

4] of heat conduction in a semi-infinite domain to a pair of integral ex-

pressions. One of the expressions enable us to rewrite Duhamel's time in-

tegral [8] to a space integral. The second is Widder's [9] integral solu-

tion for heat conduction in a finite domain. Its use enables us to impose

an embedding boundary temperature at the statinnary boundary of the new

phase in order to formulate the temperature in the old phase. We determine

the embedding temperature so as to satisfy the interfacial conditions. The

third is an inverse-Laplace-integral type expression of inerfc x that is

valid for any integer n, positive, zero, or negative. This formula is

applicable in the neighborhood of an exponential singularity.

We take a partial sum of the infinite series solution for the tempera-

ture in the old phase, and reinterpret the second summand contained in the

last term of the partial sum in the following way: This second summand is

numerically null initially, but becomes numerically significant at an

appropriate time and continues to be so indefinitely after this time. If

the last term in the partial sum is the Nth term of the infinite series, we

call the time introduced above the Nth lead time. Prior to the 0th lead

time, the first term approximates the solution in a semi-infinite domain.

At the final stage, where the infinitely many lead times have entered, the

temperatures are stationary and linear in both the new and old phases,

terminating the phase change.

The first part of this paper consists of the mathematical prelimi-

naries in three sections. In Section 1, four features are presented with

regard to the elemental functions. First, the ranges of the ihdexes of the

2



elemental functions are extended to negative integers so that the formula

for the series development of a function of a series may be smoothly

applied in Section 3. Second, the elemental temperature functions are

expressed with integrals so that the solution for heat conduction in a

semi-infinite domain may be given an integral expression in Section 2.

Third, an inverse-Laplace-integral type expression of inerfc x, valid for

any integer n, negative, zero, or positive, is derived. This is used in

Sections 7 and 9 for the transformation in the neighborhood of the

exponential singularities located at the finite terminal. Fourth, a con-

nection with Dirac's delta function [101, although well-known, is presented

so that it may be smoothly applied in this paper.

In Section 2, two series constituting the general solution for heat

conduction in a semi-infinite domain [1, 2, 3, 4] are transformed into two

integrals. One of them is the space-integral expression of Duhamel's time

integral [8, p. 30] for solving the boundary-value problem. The other is

the well-known integral expressing evolution from the initial value. In

Section 3, a formula for obtaining a serial development of a function of a

series is presented. The elemental functions defined on the moving bound-

ary are developed into a series of tI/2 by this formula. The formula is

applicable at a nonsingular point.

The second part of this paper is the solution of Ste'an's problem in a

finite domain. The problem we solve is stated in Section 4. In Section 5,

Widder's [9] solution for heat conduction in a finite domain is transformed

into a form suitable for solving the problem in this paper. In Section 6,

the embedding boundary temperature with unknown coefficients is introduced

at the stationary boundary of the new phase in order to formulate the

temperature in the encroached old phase. In Section 7, the infinite series

* . . .. -* •,. . . . .
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formulating the unknown temperature in the old phase is interpreted as an

infinite sequence. Lead times are introduced.

In Section 8, the boundary-value problem during the Nth lead time is

solved, where N > 0. It is proved that, similarly to the Neuman's solution

[8, p. 301, each of the solution temperatures consists of a single term.

Prior to the entrance of the 0th lead time, this solution is numerically

equal to the semi-infinite domain solution. In Section 9, the final stage

is analyzed. It is shown that the temperatures in both phases are station-

ary and linear in space at the final stage. Phase change therefore finally

stops.

IATPEMATICAl, PRELIhINPPIES

* 1. Elerental Functions

We define inerfc x for a nonnegative integer n by

i erfc Y = " f ! d ,(

uwhere - < x < * For an integer 0 < I- < n, this definition yields

I' n Iit n-I'
d i erfc x/dx (-I) i erfce x. (1.2)

Index n ray, tberefore, he eytended to negative integers -y defining

i -n erfc x = (-1) n d nerfc x/x • (1.3)

* Then, (1.2) holds true for any positive integer k. Using the Perwlte

polynomial, h(x), defined by

I 2 I' I - 2 (14
e /dx () e k(x) (1.4)

we transforw (1.3) to

.. . . , ...... %.. XI;I.,, .,. ,,:.-.. . . . . . . . ,. .-- :.:



i-r erfce Y 2 e H (X) (1.5)

Tao [4] defines C n(y) by

C (x) = {i erfc(-x) + (-1 )
n inerfc x} (1.6)

Substituting fror (1.1), we transfor (1.6) to

I c2 (1.7)
)f (X-X) e dX

n 1 -0

whicb integrates to an ntb degree polynoi'ial,

( [n/2I (2x)n-2k (1.8)
G (x ) =  -- 1.8,

n 2 k=0 k!(n-2k)!

The derivatives of the polynomials Gn(x) are:

d kGn (x)/dx = Gn-k (x) for k < n

- for k = n (1.9)

-0 for k > n.

Index n may, therefore, be extended to negative integers by defining

G (x) = 0 for n > 1 . (1.10)-n

We rewrite

k(x,Kt) - e X2/(4(ct)/ t(.1)

* to an inverse-Laplace-integral type expression,

k(x, Kt) f J I exp(X 2 x )d , (1.12)27i 4 - c-ia 4 4 Kt--

where c is a complex number whose real part is finite. The right side of

(1.12) transforms to the right side of (1.11), when the former is

* " integrated with regard to p, defined by

5
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u (x- / )/2

With two phases in Stefan's problem, we use Kt in place of t, where K is

the thermal diffusivity of a phase and t is time.

We derive the formula

c+iw 2
inerfc x -f A exp(-- x)dX, (1.13)

c-i.

valid for any integer n, - < ( n < . For a nonnegative integer n, we keep

. the real part of c positive, so that the integral is convergent. To prove

(1.13) for such an integer n, we begin by transforming (1.1) to

inerfc (x/4Kt) 2 1 f yn k(x+y, t)dy . (1.14)

t~)n 0

*~' Substituting k(x+y, Kt) from (1.12) and evaluating the integral with regard

to y, we obtain

n x 1 c+i- e 2p(x d (1 5)
= erfc - i f X (1.1

,4Kt c-i A4 Kt

which is equivalent to (1.13). To prove (1.13) for a negative integer a,

*we begin by noting that (1.3) is equivalent to

-n )-n-1 i - n n-n-
I erfc(x/ ,V4 Kt) =  2(-1~ -  (4 -t) n  • d n - I  k(x,ict)/dx n - I .

Substituting k(x,Kt) from (1.12), we find (1.15) for a negative n. In a

". finite domain 0 < x < X, we revise (1.15) to a nondimensional form,

'i {,4 K---n X I c+i -n-
1-- inerfc - = 1 i exp(& 2 dt - ) d . (1.16)

Equation (1.12) may transform to an alternative form [9, p. 361,

k(x,t) 7 f exp(ixX - ict) d)X

6
* *. . . *, -® . . ... * . - . ~ .



Letting t = 0, the above becomes

It ix)

k(x,O) = f e dX

Therefore we find

,(,O)= 6(x) , (1.17)

where 6(x) is Pirac's delta function [10, p. 3&].

2. Intepral Forrulas

The leat eovation,

aT/at - C3 
2T/ax 2  

(2.1)

has a general solution,

T(x,Kt) = [ (ntt) r [AG p ) + B Drerfc -  (2.2)P =0 n V 4 Kt V J4 It

Tfis was used to solve Stefan's probler in a seri-infirite dorain [1, 2, 3,

41.

We ray tse Ieat ftunctions,

U (X,Kt) = n! (V 4KJ i erfc(YV4Kt (2.3)

and

vn(x,Kt) =-n!(JV-4-) (. ()/P4-t) • (2.4)

The latter is called the feat polvnomial bv Vidder [9, p. 8-9]. P, using

(1.14) .nd (1.7), (2.3) and (2.4) rqav be given integral expressions,

Qo

U (x,Kt) = 2 f vp k(y+v, Kt)Ov (2.5)

and

vn(X,Kt) = f yr I(O-V, Oct )dy • (2.6)

n7



I~i7.

TI-erefore, 1y Oefining, in the infinite dorain - < x < , functions

1 n

f(x)= '.L A x (2.7)
• n=O

and

1 n
g(x) = 2 [ B x for 0 < x < (2.8a)

n=0  n

= 0 for - < x < 0 , (2.8b)

(2.2) transforms to an integral expression

T(x,Kt) = f f(y) k(x-y, Kt)dy + f g(y) k(x+y, Kt)dy . (2.9)

Use of the delta function (1.17) shows that (2.9) determines the

initial value f(x) in the semi-infinite domain 0 < x < , because g(-x) is

null for x in this domain. The initial value f(x) in the integral form

(2.9) may be discontinuous and is more general than the serial form (2.2).

We assume f(x) to be odd,

f(-x) =- f(x) . (2.10)

Then (2.9) transforms to

T(x,Kt) = f f(y)[k(x-y, <t) - k(x+y,Kt)]dy + f g(y) k(x+y, Kt)dy (2.11)
0 0

The first integral becomes zero at x = 0 for any t in the domain 0 < t < ®

and the second integral becomes zero at t = 0 for any x in the domain 0 < x

< (. Therefore, the first and second integrals describe the evolutions

from the initial and boundary conditions, respectively, in a semi-infinite

domain.

Particularly, we have an expression of the boundary value,

"00

T(0,Kt) = f g(y) k(y,Kt)dy • (2.12)
0

82
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If

n
T(O,t) = B (4't inerfcO, (2.13)

n=O n

then the solution g(y) of the integral equation (2.12) is (2.8a).

The solution of the boundary-value problem by use of the integral

equation (2.12) is consistent with Duhamel's theorem [8, p. 301. To show

this, we refer to Widder's [9, p.12 7] solution for heat conduction in a

semi-infinite domain. In our notation, it is

00

T(x,Kt) f [k(x-y,Kt) - k(x+y,Kt)] T(y,O)dy +
0

t
+ f h(x,I(t-T)) T(0,KT)dT , (2.14)

0

where

h(x,Kt) = -2 Dk(x,iKt)/x = (x/(ct)) k(x,ict) • (2.15)

The first integral in (2.14) is the one in (2.11). By substituting

* T(0,Kt) from (2.12), the second integral in (2.14), a product of Duhamel's

theorem, becomes the repeated integrals,

00 t
f g(y)dy f h(x,K(t-T)) k(y,K )d-
0 0

The convolution integral in the above simplifies to,

~, t

f h(x,K(t-T)) k(y,KT)dT = k(x+y,ict) , (2.16)
0

because both sides yield the same Laplace transform,

(1//4s) exp(-(x+y)/s)•

-. 9
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To derive this, we employ Kt in place of t in the usual Laplace trans-

forms. Widder's solution is, therefore, the same as ours.

3. Functions Of A Series

At the interface,

Go (n+l)/2

s(t) I s t (3.1)
n=0

the temperatures of the new and old phases need to be expressed as func-

tions of tl/2 , so that the interfacial conditions may be expressed as

functions of tI /2. We use a revised version of Faa de Bruno's formula

[11, p. 331: Let functions z = z(y) be analytic and y y(x) be an infinite

series,

y a xn (3.2)
n0 n

Then the power series expressing the composite function z(y(x)) is given by

z[y(x)] z[Y(ao) ] + [ xn I S (a ) ( ) , (3.3)
0 n=1 V~ nv v d V _0n=1 v=!dy v  xO

where

X Xn-v+l
S (a )  = 1!  .. all ... a nv+ (3.4)

S (a. A= A I 1  n- v+iIi  n-v+1"

for n > I and > z v > 1, where the summation is over all the sets of

at least one nonzero and all nonnegative integers X1, A2 ... , An that

simultaneously satisfy the two equations,

Al1 + X2 + A3 + ... + Xn-v+l - v (3.5a)

and

A2 + 2A 3 + ... + (n-v)An_V+I  n - v ,(3.5b)

10



for every integer v in the range,

I < v < n . (3.5c)

The solutions are tabulated in [12, p. 831]. The argument a. of S (a.)

stands for n - V + 1 arguments al ,--, an-v+.

Substituting s(t) from (3.1) for x in G (x//4Kt) and inerfc(x/44 t),n

we find the series of T,

G (t) G (n)(----) Tk (3.6a)
Gn /4 t k=0 /44

and

-rf ( t) I (n)(__.J__.)T k (3.6b)

AhKt k=O k 47

The coefficients in (3.6a) and (3.6b), which we call G-derivatives and

I-derivatives, respectively, are given for k 0 by

G(n)(s /i4/) - G(s 0 //4K) (3.7a)

and

I(n)(s -= inerfc(so/4-) (3.7b)0 j

and for k > I by

(n) (-i) k s S.

k n v (-=-) . Sk ( ) (3.8a)
v4 V=1 

4 K 4K

and

s. k so  s.

I) = , (-1)v in-verfc S •k I _ - (3.8b)

" The index n - v can be negative. Due to (1.10), therefore, the number of

components of a G-derivative, shown on the right of (3.8a), may be less

. II

........................- ".... .



than k or possibly zero. The argument s./ / K in the G-derivatives and the

I-derivatives stands for k arguments sl//4-- , .... , S/K

Substituting x in (2.2) with s(t) from (3.1), we find a series of T,

T(s(t), Kt) = I T(s) T (3.9 a)

p=0 
P

where

Gp-n =p n ( ) (n)-
T ( 4) [A G(n)L + B n (3.9b)

P n n p-n nn-p

Differentiating (2.2) with x, substituting x with s(t) from (3.1), we find

another series of T,

3T (s(t), Kt) = T(Ds)Tp (3 .l0a)ax -- p=0 P '

where

T(Ds) : n-i G (n-I)(l-_)- I ( -) ] . (3.1Ob)

p n=0 n p-n V4 n p-n i4K

Multiplication of T by aT/3x on the left side of (3 .10a) makes the series

of r on the right side of (3.10a) conform with the series of T on the right

side of (3.9a).

We call (3.9b) and (3.10b) level-p coefficients of the series (3 .9 a)

and (3 .10a), respectively. The highest index of the parameters in the

level-p coefficients are p, which we call level-p parameters. Three level-

p parameters are contained in the level-p coefficients. Two of them are A
p

and Bp. The third is s , hidden in I 0 (s /4) in (3.9b) and in
ppp j

I (1)(s IV/4) in (3.10b), as may be found by use of the formula,
* p j

S nl(aj) - a, (3.11)

which is a particular case of (3.4). In the equations for the determina-

tion of them, which we discuss subsequently, the higher-than-level-0 param-

12



eters are all linear terms. Only so, one of the level-O parameters, is

nonlinear.

STEFAN'S PROBLEM IN A FINITE DOMAIN

4. Problem

We consider the simplest Stefan's problem in a finite domain 0 < x <

t. We assume freezing starts at x = 0 on t = 0. The boundary temperature

TA at x = 0 is a constant that is lower than the freezing temperature

TF and the initial temperature TB is a constant that is higher than

TF. The boundary temperature at x = £ is a constant TB . We have

TA < TF < T . (4.1)

At t = 0, a new phase emerges at x = 0, whose temperature we express

by TI(x, 1it), where KI is the thermal diffusivity of the new phase.

The domain of the new phase is 0 < x < s(t), where s(t) is given by (3.1).

The temperature of the old phase is given by Tfl(x,Kjlt), where KU

is the thermal diffusivity of the old phase. The domain of the old phase

is s(t) < x < t. The quantities of the new and old phases are designated

by the roman numerals I and f, respectively, used as a sub- or superindex.

We extend the domain

s(t) < x < £

of the old phase at time t to

O x<

by introducing the embedding boundary temperature at x 0. It shall be

determined so as to satisfy the two interfacial conditions at the freezing

front x = s(t),

T T
H1 F

IT fflT

KI -- K L Lp (4.2)

13
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where KI and K11 are the thermal conductivities of the new and old

* phases, respectively, p is the assumedly equal density of the two phases,

and L is the latent heat.

The embedding technique was initiated by Boley [13]. Using elemental

* functions, ours is much simpler than his.

* 5. Widder's Solution of Heat Conduction

With unrestricted initial and boundary conditions, Widder's [9, p.

1311 solution of heat conduction in a finite domain is applicable to

* solving the problem of embedding posed in the previous section. In our

notation, his solution is

x
T M(X,K IIt) =1 [B(x-Y,icM 0 - O(x+y,icrt)J T 1I(y,O) dy +

0

t
+ f O(X,ic (t-t)J T (0,% 1 )dT + (5.1)
0 : . :

t

+ f O(zX-,9D(t-T)) T (1, K T)dT

where

O(X, Ic~ 0 l(x + 2nk, ic rE) (5.2a)

and

O(XKc t) = b(x + 2nXK M t) .(5.2b)

*Function h(X,Kit) is given in (2.15). We call the three integrals on

the righ-t side of (5.1) the parts due to initial distribution, ewbedding

* boundary, and tertrinal boundary.

14



The first integral in (5.1) describes the evolution from the initial

distribution T3L-(x, 0). To show this, we use function f(x), which is

odd, as shown In (2.10), and is periodic iitb period 2X. We find a rela-

tion,

f f(y) k(x-y,Kit)dy = f f(y) [O(x-y,K t) - 8(x+y,C 2t)]dy
--O 0

We assume that TD-T(x,O) is extended to the infinite domain in the sane

manner as f(x) is. Letting t = 0 on the left side of the above equation

and using the delta function (1.17), and noting that by letting t = 0 on

the rigbt side of (5.1) the second and tbird integrals botb disaprear, we

find that Trr(x, 0) is the initial value.

The second and tbird integrals on the rigbt side of (5.1) describe the

evolutions from the boundary conditions at x = 0 and Z, respectively. We

clarify tlis statement in two parts: The forrer or latter becomes

T1-(O,cflt) or T3:1(1,crit) by letting x = 0 or 1, respectively.

The former or latter reduces to zero by letting x = I or 0, respectively.

Note that tfe first integral becomes 0 at x - 0 and x = £ because of its

periodic distribution.

We start the proof by formulating the boundary conditions at x = 0 and

£.,

T(0it) - f gl(y) k(y,K t)dy (5.3a)

0

and

T i(,K -it  f g2 (y) k(Y,K,t)dy (5.35)

0

by applying (2.12) to two semi-infinite domains, 0 < Y < and I > x >-

respectively, where y in (5.3a) and (5.3b) stands for x and X-x, respec-

tively, and functions g1 (y) and g2(y) are defined to be zero for negative

15
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e.7

values of y. The delta function (1.17) nay, therefore, be applied to find

* the initial terperature.

We substitute (5.3a) or (5.3h) into the second or third integral,

respectively, on the right side of (5.1), divide the range of sunration on

the right side of (5.2b) into the nonnegative integers and the negative

integers, and use in the latter tfe oddity of the h-function, shown hy

(2.15), so that (2.16), in which the argurrents trust be positive, Tray he

applied. Thus we find

t
f (X,KT (t-T)) T r(OK MT)dT
0

= f gl(y) I {k(2nt+x+y, KMat) - k(2(n+1)t-x+y, ,ict)}dy (5.4 a)
0 n=0

and

ti f O(X-x, KTT(t-T) ) TTT,(X,OCT)dT

0

9= f 2(Y) I {k((2n+1)-x+y,eKcMt) - k((2n+l)t+x+y, ict)dy . (5.4b)
0 n=o

If we let x = 0 or t on the right side of (5.4 a) or (5.4b), we find

* that, after the cancellation, only the n = 0 term remains, which is equal

to Trj(O,KIct) by (5.3a) or Tl (t,rnt) by (5.3b), respectively.

The first part of the statement is thus proved. The second part

,* immediately follows.

6. Temperature with Embedding Unknowns

We now apply our initial and boundary conditions to Widder's unre-

stricted solution. To find the part due to the terminal boundary, we let

* g 2 (Y) = 2 TB in (5.4b) and use (1.14) with n 0 0. We find thus

*, 16



TB = TB [erfc ( 2  )  -x erfc(2n+1)+I. (6.ta)
n=0 /4 icT t V4 KZ t

To integrate the part due to the initial distribution, we let Tr-(y,O) =

TB in the first integral on the right side of (5.1), substitute the

0-functions from (5.2a), change the range of integration from 0 to 2 to the

difference of the one from 0 to - and the one from 2 to ® , carry out the

thus defined integrations by use of (1.14) with n = 0, and change those

with negative argument to those with positive argument by use of (1.6). We

find thus

ID = T{1 - I (- 1 )Perfc n2+x + [ (- 1)nerfc - } (6.11-)
n=O 4K t n=l /4K K t

Adding (6.1a) and (6.1b), we get

TB + ID = TB{I - I erfc 2n£4+x + I erfc 2n2.-y} ( 6.1c)
n=O /4K t n=l /4K t

. Isirg g(y) in (2.8) for gl(v) in (5.4a), rewriting n and Bn in the

initial condition (2.13) to P and F/k , respectively, and using (1.14),

we integrate the part due to the enbedding boundary condition.

Surring the results, we obtain

Ti M(xK t) = T +

I B I_ I erfe 2n__, i erfmPn+1)2-x} (6.2)

=0 n=0 /4Kg t K/4 = t

The coefficients P101 , P11 ,.. are to be deterrined. Included in the sur-

n'and for k = 0 In (6.2), the forrule in the pair of braces in (6.1c) need

rot be listed. It is easy to directly check that (6.2) satisfies all the

conditions thus far irposed. Differentiation yields

17
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""T (x,it)

BU

- 4 -- 1 2 P 'e r f c E2  + y + i k -le r f c 2 ( + l) x } . ( 6 . 3 )k =C =0 ,/4 1-t /4 K t

7. lead Tilres

We reurite (6.2) to a secuence

T (x, Kt) = lirt T)(y,) , (7.1)
MU17 (+0 ic

where

(N) TTU )(x,ict[."T 1: X, 1t) =T B +

oo /4,Tc tkN
MN ~ k N {k ____k_(+1).-

+ Bk I fi k erfc 2n+x kerfc , (7.2)
k=0 n=0 / 4 ict /4 ct

which satisfies the terminal boundary condition and the initial condition.

If coefficients BkMI N are chosen to satisfy the interfacial conditions
k

(4.2), we call (7.2) the Nth stage solution.

To understand the successive emergence of infinitely many stages in

(7.1), we introduce a lead time in the Nth stage solution. We define it in

a special case such that Bk N = 0 for all the integers k > K + I . Time t

that makes iKerfc[(2(N+4)- s(t))/ _t] numerically effective will be

called the Nth lead time. Note that this is the least of the values that

* K f2( '19-)/ 1i erfc[L2(N+1)L-x)/v'4Icjtj in the last pair of braces in (7.2) can take for

k = K in the domain s(t) < x < X at time t.

This definition is appropriate to the problem we are solving in this

MN
paper, where, as we shall show, all the coefficients B are zero for k >

k_

I and therefore only B0
N is nonzero. A lead time is a semi-infinite time

interval. Prior to the Oth lead time in our problem, the 0th stage solu-

18
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tion is the semi-infinite domain solution. When the 0th lead time is

effective, the second summand exists in the 0th stage. The final stage is

arrived at in the infinite stage.

Although not a constant but a time interval, a lead time must be

dealt with like a constant in the time differentiation. Except prior to

the 0th lead time in the 0th stage, the transcendental equation for the

determination of s0 at the Nth stage includes the lead time, as we shall

show, and therefore the root so is a function of a lead time. We express

s(t) at the Nth stage by

S(Nt) N (N) t(n+l)/2 (7.3)

s() = £ ,(73

n=0

where coefficients s(N) are in general functions of the Nth lead time.

Similarly to (7.2), we rewrite (6.3) to the expression at the Nth stage,

3T(N)

T -xI (x,KIit) =

k= - --Bk 4 )k {iklerfcn+x + 'k- erfc2(n+l )L - x} (7.4)

k0O /4jT n=OV K0

To find the series of T at the interface, we use the formula (1.13) to

obtain the integral expression

k 2XIc+i- -k (X 2 n

ik erfc( 2nt + n) - f exp(-- - + Xn)dX , (7.5)
V4Km t c-i- / K 71 t

where

n S (N) Tp

p=0 A S

Use of the development (3.3) yields the expansion

(N) n/(N)

e :;An ex (+;Xs 0 / T P :;~)~ S pv j (7.6)

p-0 vo-0\ 7
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where the convention,

S 0 0 (aj) 1

and
S 0n (a) 0 for n>1I

*is used. Substituting (7.6) in (7.5) and using (1.13), we obtain the

* series development,

(N) /(N 2nt s(N)t
.k 2nZ ± s () p 2ntvs 0AK MtV=-0 V(4Kj[)KMt

(7.7)

Letting x = s (N) (t) in (7.2) and (7.4) and using (7.7), we find series

Of T:

T~s(N) (t)~s Pu)= ~ ~ t~,(.a

T ]a(Ns (t) t UDs) T~ T (7.8a)

3TT

p- 0  p

We nee6 only the first terms,

(IIN,S)T
T 0 TB+

+ BUNI N Y{erfc 0nt+ N/ erfc2(~) 0N, (7.9a)
0 =4IAKt AK41 t

* and

T (IN,Ds)=
0

B BUN N 2n2. + s(N )it ~ 2(n+1)k - N
-0 { i- 1erf-. + 1-1 rc (N (7.9b)

A4, n0 Z7 /4 -- A t
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Because the coefficients B 1 N for p > 1 are, as we shall show, all equal to
p

zero, the higher terms need not be made explicit.

8. The Ntb Stage

The general solution (2.2) gives the Nt stage temperature of the new

pbase,

T( I(x,KIt) = I(4 t) [An Gr (-) + BIN i erfc( ] . (8.1)
P=O i /4iczt

I I(N)

Substituting x with s (N)(t) from (7.3), and expanding the elemental func-
(N)(s(N)(t i )  t

tions by use of (3.6a) and (3.6b), we rewrite T (s (t), t) to a
I I

series of T,

(N) (N)(IN,s)

T (N)s(N)(t), Kit) = k TI r , (8.2a)
k=0

where

IN,s) [ AIN (n)lj + FiN 1 (n)(iA (8.2b)

Differentiating (P.1) with x, substituting x with s (N)(t) from (7.3), and

using (3.6a) and (3.6b), we find

aTI  (ND)r

T -- (s(N)(t), it) I T(IND s)T (8 .3a)
S =0 k

where

T(INDs) N n-1 sN)\(n-1 IN i N)

kK n -0 [ A -F) B I I( n(8.3 )

Rewriting the boundary conditions,

T (N) (0, K = TA (8.4a)
I it) T

and
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T(N)(SN()
.T (s((t), KitJ = TF (8.4)

into series Of T, we can successively determine A N ad BN as fuctions s(')

p P

,.., s The first pair of this seouence is:
p

INe/
A T T erf (s0(N )/,/- ) E r f (s( )/,i )  (8.5a)o F A0

and

FN 0  - (TF - TA rf(s N)/V4KI) . (8.5b)

Ve write Erf with capital F lest it be confused with erfc x. The bigher

pairs of the sequence need not be descrihed in our proile-, where they are,

as we shall show, all equal to zero.

( )0
Substituting T' from (7.9a), the coefficient of T in equation

0

(4.2a) yields the evaluation of PON
P0

UINB =-(T - T)/ T  (.6a)o B F N

where

N 2n + N)/- 2(n+l)t- s(N)
RN = [erfc - erfc- ] • (P.6b)

n=0 AK -t /4K- t

(IN,Ds) (11N,Ds)
Substituting To found fror (S.3h) with k = 0 and T(0
from (7.9b), the coefficient of T in euation (4.2h) yields the transcen-

dental equation for the determination of s
( N )

U

where
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N 2n+ s(N) t 2(in+O) - s(N) it

QN= I [i-erfc 0_ + i- erf. ] . (8.8)
n-0 /44 t 4tt t

Thus determined, s ( is a function of the Nth lead time. Then, AON

IN TIN
B0 , and B are also functions of the Nth lead time.

We have thus evaluated the level-0 parameters. We call the equation

for determining the level-n parameters level-n equations. For n > 1, the

level-n parameters are linear in the level-n equations. The level-I equa-

tions are homogeneous with respect to the level-I parameters, which are

therefore all equal to zero. Proceeding this way, we find that the higher-

than-level-0 parameters are all equal to zero.

Thus we find

(N)
T I  (x,NI)t) = TA + (TF - TA) Erf- Erf - (8 .9 a)

I4 A I t V4 oI

and

aTN
T 3T• (xit) 0 4+-K BIN [i-lerfe 4x~i (8.9b)

for the new phase. Also we find

(N) x1 )= TB + B N N 2nt+x - ]r (+11x (8.10~a)

12 BxI t B0  n 0 [erfc -e f J n l t

and

NB UN

TN (cX t) N [1 Verfc 2nt+x + Vierf 2(n+l) L-x
ax Z4 n-0 4,ct lc t

(8.1Ob)

for the old phase.
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9. The Final Stage

To formulate the final stage, we transform the infinite series,

L ict k ao k 2nX+x k 2(n-s-)X-x
Lk = ( ) . [i erf c - - i erfc 2 _ _ _ - ] (9 .1)

and

Mk =  k k f 2n + ik f2(n+1)-x J (9.2)

n=0At 4-t

contained in (6.2) and (6.3), respectively. We drop the subscript fl in

this computation. Although our problem is concerned with L0 and M- 1, we

transform the general cases Lk and Mk at this stage of the exposition.

We begin with the transformation of the infinite series,

( 4Kt)k ikerfc 2n£+x

n=0 4ict

Using formula (1.16), this becomes

I .- k-1 Kt A -2n&• '"i ']f exp(&'2 -  I d;E)
c-i 2C-i- Xn=O

c+i-k
2ri i exp( - + - - Cosech& d •

2iC-ia £2 i

, We write Cosech x with capital C, lest it be confused with cosec x.

Similarly,

V4Kt k k 2(n+l)£t-x
Si erfc

n-O

transforms to

".c+iin-- 1-+JD k-I Kt I-x,
f exp(2 - - &- Cosech& d •- 2wi -2. c-m £2

24



Thus we find

1 C+i -k-1 2t )o h(3
Lk = W f exp(E 2 Sinh( (9.

c-i- I

Expanding the Sinh function by use of the addition formula, and using

(1.16) and (1.6), we may give (9 .3a) another form,

/4 Kt k , x ' I-(-1)k etLk = (-) + er -- -
k t 1  K\Zt) 2 AkerfKt

c-I -k-I x) CothE dE (9.3b)

When x is substituted for s(t) from (3.1), the latter transforms to a

series of r, but the former does not. Similarly, we find

C+i- -k-I Kt )-X
Mk= i f E exp(E 2  2 Cosh(E y) CosechE dE (9.4a)

and

k [ __ __ x +(_~

Mk (--) k4j- - 1-12 1 erfc--

1 -k-I 2t
+ f E exp( 2 -) CothE Cosh -x dE . (9.4b)c-ic c £

In our problem, the temperatures at the final stage are stationary and

linear in space. To show this, we begin by letting

() = exp( 2 K Sinh( i/sinh E (9.5a)

in (9.3a) and

exp- 2 1 Cos ( Sinh (9.5b)

in (9.4a). Noting that the *()'s are even functions, we find that L)
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and M-1 are given by the respective residues at = 0. Thus we find

L= - x/ (9.6a)

and

M- 1  . (9.6b)

To formulate the final temperature, we first note that

lim sN) =  0

* and that the final interface coordinate, s(w), is given by

s(-) = lim SN) (9.7)
N+w

Note that as N + , also t + . Taking the limit in (8.9 a), and noting

that

Erf(x) - (98)

for a small x, we find that the final temperature in the new phase is given

by

Y--)

T (X,Kt) = TA + (TF - TA)x/s(a) (9.9)

Using M-1 in (9.6b) and L0 in (9 .6a), we find

lim QN = K - t (9.10a)
N+w N 3:

and

li, RN = 1 - s(')/£ • (9.lOb)
N+, 

N

Dividing all the ters in (8.7) hy t1/2, and letting t o, we find that

the limit of (8.7) is stationpry, given by

K(T -T) K (T - T)
I F A U1B Fs(-) 0 - s(-) (9.11)

* -. 26
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The phase change therefore finally stops. Using (9.10b) in (8.6a), we find

that the limit of (8.10a) is given fy

T )(xcK t) = TB - (TB - TF)(-x ( - )). (9.12)

CONCLUSIONS

Py using the simplest boundary and initial conditions we bave sbown

*i that Stefan's problem in a finite domain can be solved. To solve the

- problem, we bave employed the solution for beat conduction in a finite

domain whose elemental temperature functions are members of the family of

• the error function. The effect of t e finite terminal is the introduction

of singularities. Starting at a solution in the semi-infinite domain and

passing tbrough infinitely many lead times, the solution in the finite

domain arrives at the final stationary stage.
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